Effects of free fatty acids per se on glucose production, gluconeogenesis, and glycogenolysis.

نویسندگان

  • Peter Staehr
  • Ole Hother-Nielsen
  • Bernard R Landau
  • Visvanathan Chandramouli
  • Jens Juul Holst
  • Henning Beck-Nielsen
چکیده

Insulin-independent effects of a physiological increase in free fatty acid (FFA) levels on fasting glucose production, gluconeogenesis, and glycogenolysis were assessed by administering [6,6-(2)H(2)]-glucose and deuteriated water ((2)H(2)O) in 12 type 1 diabetic patients, during 6-h infusions of either saline or a lipid emulsion. Insulin was either fully replaced (euglycemic group, n = 6), or underreplaced (hyperglycemic group, n = 6). During saline infusions, plasma FFA levels remained unchanged. Glucose concentrations decreased from 6.7 +/- 0.4 to 5.3 +/- 0.4 mmol/l and 11.9 +/- 1.0 to 10.5 +/- 1.0 mmol/l in the euglycemic and hyperglycemic group, respectively. Accordingly, glucose production declined from 84 +/- 5 to 63 +/- 5 mg x m(-2) x min(-1) and from 84 +/- 5 to 68 +/- 4 mg x m(-2) x min(-1), due to declining rates of glycogenolysis but unaltered rates of gluconeogenesis. During lipid infusions, plasma FFA levels increased twofold. In the euglycemic group, plasma glucose increased from 6.8 +/- 0.3 to 7.8 +/- 0.8 mmol/l. Glucose production declined less in the lipid study than in the saline study due to a stimulation of gluconeogenesis by 6 +/- 1 mg x m(-2) x min(-1) and a decline in glycogenolysis that was 6 +/- 2 mg x m(-2) x min(-1) less in the lipid study than in the saline study. In contrast, in the hyperglycemic group, there were no significant effects of elevated FFA on glucose production, gluconeogenesis, or glycogenolysis. In conclusion, a physiological elevation of plasma FFA levels stimulates glycogenolysis as well as gluconeogenesis and causes mild fasting hyperglycemia. These effects of FFA appear attenuated in the presence of hyperglycemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of nicotinic acid on fatty acid kinetics, fuel selection, and pathways of glucose production in women.

Chronic nicotinic acid (NA) ingestion effectively lowers lipid levels, but adverse effects on glucose metabolism have been reported. Our goal was to investigate acute and chronic effects of NA on lipolysis and glucose metabolism in women. Healthy normolipidemic volunteers (n = 5) were studied twice; four-day hospital stays were separated by 1 mo, during which time subjects took increasing doses...

متن کامل

Obesity and type 2 diabetes impair insulin-induced suppression of glycogenolysis as well as gluconeogenesis.

To determine whether the hepatic insulin resistance of obesity and type 2 diabetes is due to impaired insulin-induced suppression of glycogenolysis as well as gluconeogenesis, 10 lean nondiabetic, 10 obese nondiabetic, and 11 obese type 2 diabetic subjects were studied after an overnight fast and during a hyperinsulinemic-euglycemic clamp. Gluconeogenesis and glycogenolysis were measured using ...

متن کامل

Differential effect of saturated and polyunsaturated fatty acids on hepatic glucose metabolism in humans.

Prolonged infusions of lipid and heparin that achieve high physiological free fatty acid (FFA) concentrations inhibit hepatic (and peripheral) insulin sensitivity in humans. These infusions are composed largely of polyunsaturated fatty acids (PUFA; linoleic and linolenic). It is not known whether fatty acid composition per se affects hepatic glucose metabolism in humans. To address this issue, ...

متن کامل

Effects of free fatty acids on hepatic glycogenolysis and gluconeogenesis in conscious dogs.

The aim of this study was to determine the effect of high levels of free fatty acids (FFA) and/or hyperglycemia on hepatic glycogenolysis and gluconeogenesis. Intralipid was infused peripherally in 18-h-fasted conscious dogs maintained on a pancreatic clamp in the presence (FFA + HG) or absence (FFA + EuG) of hyperglycemia. In the control studies, Intralipid was not infused, and euglycemia (EuG...

متن کامل

The Inhibitory Effects of Insulin on Hepatic Glucose Production Are Both Direct and Indirect

Previous studies suggest that insulin can inhibit hepatic glucose production by both direct and indirect actions. The indirect effects include inhibition of glucagon secretion, reduction in plasma nonesterified fatty acid levels, reduction of the amount of gluconeogenic precursor supplied to the liver, and change in neural input to the liver. There is a controversy concerning the fact that the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 52 2  شماره 

صفحات  -

تاریخ انتشار 2003